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S E C O N D A R Y  LOSS OF STABILITY OF AN E U L E R  ROD 

V. V. K u z n e t s o v  and  S. V. Levyakov UDC 539.3 

The solution of the classical problem of the postcritical behavior of a compressed, simply sup- 
ported rod is considered. The stability of the well-known elastic solution that emanates from 
the first critical point is analyzed and new branches of the states of equilibrium are found. The 
value of the force that corresponds to the secondary loss of stability is determined. 

Until recently, the existing Lagrange solution of the problem of the postcritical behavior of an Euler 
rod in elliptic integrals has been considered to be complete [1-3] and has been used as the standard to 
verify numerical methods of solving nonlinear problems for thin-walled structures. Using a finite-element 
shell model that takes into account large displacements and rotations, Korobeinikov [4] found that if the 
symmetry condition is ignored, the secondary bifurcation of the solution occurs in the region of postcritical 
deformation, and an asymmetric deformation branch appears in the range of loads 2Pcr < P < 7Pcr (Pcr is 
the critical Euler force); this branch disappears with further increase in the axial force. 

Figures 1 and 2 show the solution of the problem that was obtained by a numerical algorithm of de- 
termining the multiple-valued nonlinear solutions of rod flexure problems in the presence of many bifurcation 
and limiting points [5]. Here W and U are the mid-span deflection and longitudinal displacement of one end 
of the rod (the other end is immovable), respectively, and L is the rod length. Solid curves refer to stable 
states, and dashed curves to unstable states. In essence, two projections of the deformation curves in the 
( g  + 1)-dimensional space [5] onto the planes (P, W) (Fig. 1) and (P, U) (Fig. 2) are given for positive 
and negative values of the force. As numerical calculations have shown, the division of the rod into 28 finite 
elements provides high accuracy of nonlinear solutions for a wide range of rod flexure. 

Using the Sylvester criterion, we established that  the Lagrange solution [sections of the curve AB1 
(AB2) and its smooth continuation in Figs. 1 and 2] is stable only up to the point B1 (B2), where P = 2.18Pcr. 
A new branch of the unstable states of equilibrium B1B3 (B2B4) emanates from the point B1 (B2), where 
the two hinges are brought into coincidence and the rod can rotate as a rigid body. It is noteworthy that the 
branches B1B3 and B2B4 are the closed curves in the (N + 1)-dimensional space which do not intersect with 
one another. According to the Lagrange solution, the force value at which the ends of the inextensible rod 
coincide is determined from the relations 

2E(Tr/2, k) - F(~r/2, k) = O, P = (4/Tc2)F2(Tr/2, k)Pcr. 

Hence, k = 0.90891 and P = 2.18338Pcr. Here F(Tr/2, k) and E(7c/2, k) are complete elliptic integrals of the 
first and second kinds and k is the additional modulus of the elliptic integral [6]. The solutions B1B3 (B2B4) 
exist for -2.18Pcr < P < 2.18Pcr. For 2Per < P < 10Pcr, any other equilibrium curves branching from the 
Lagrange solution were not found. Thus, as a series of stable states of equilibrium for increasing load, the 
curves 0A and AB1 (AB2) are realized with a subsequent jump onto the branch CD where the rod is straight 
again, but the movable support is at the other side relative to the immovable support compared to the initial 
position of the rod. 
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The results of the qualitative experiments on a celluloid model have shown that the states of equilibrium 
that correspond to the branch AB1 (AB2) after the point B1 (B2) (loop-like shapes) cannot be realized without 
additional restrictions on the displacements of the rod. This fact supports their instability. 
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